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Abstract. In this study, an extension of Mangat Randomized Response
Technique using alternative beta priors has been considered and new Bayes
estimators of population proportion of respondents possessing stigma-
tized attribute were developed when data were gathered through admin-
istration of survey questionnaire on induced abortion on 300 matured
women in the metropolis. Dominance picture of the proposed Bayes esti-
mators has been portrayed for a wide range of values of population pro-
portion assuming alternative Beta distributions as Prior information. It
is observed that the proposed Bayes estimators performed better than the
Bayes estimator proposed by Hussain et al [15] when a simple Beta prior
was used for small, medium as well as large sample sizes respectively.
This is evident as our proposed Bayes estimators have least mean squared
errors (MSEs) asπ approaches one.
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1. INTRODUCTION

Untruthful responses might be obtained from respondents in a direct interrogation ap-
proach regarding sensitive attributes. For many reasons, it might be necessary to gather in-
formation about prevalence of stigmatized attribute(s) in the population. Warner [34] was
the first survey statistician who proposed a nifty method of survey to gather information re-
garding stigmatized attributes by ensuring confidentiality of the respondent. Up till now, a
large number of improvements on Warner’s Randomized Response Technique (RRT) have
been proposed in several studies. For example, Greenberg et al. [14], Chaudhuri and Muk-
erjee [10], Mangat and Singh [23], Mangat et al. [24], Tracy and Mangat [32], Mahmood
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et al. [22], Bhargava and Singh [9], Singh et al. [31], Christofides [11], Kim and Warde
[20], Zaizai [36], Hussain et al. [16], Perri [29], Diana and Perri [12,13] Hussain et al.[15],
Hussain et al. [18,19], Abid et al. [6], Adebola and Adepetun [1], Adebola and Adepetun
[2], Adepetun and Adebola [3] are some of the numerous to be mentioned. However, in
situations where prior information is available, Bayesian technique of estimation can be
adopted in order to estimate the unknown parameter by combining sample and prior infor-
mation. Winkler and Franklin [35], Pitz [28], Spurrier and Padgett [30], O’Hagan [26], Oh
[27], Migon and Tachibana [25], Unnikrishnan and Kunte [33], Bar-Lev and Bobovich [8],
Barabesi and Marcheselli [7], and Kim et al. [21], Adepetun and Adewara [4], Adepetun
and Adewara[5] are some of the researchers who made efforts in Bayesian analysis of ran-
domized response techniques. Using the Mangat and Singh [23] Randomized Response
Technique and applying the Bayesian estimation, we propose two Bayesian estimators of
population proportion of respondents possessing stigmatized attribute(s). Before moving
to the formal development of the proposed Bayesian estimators, we present the Mangat
and Singh [23] Randomized Response Technique in the following section. The existing
Bayes estimator is presented in section 3. The proposed Bayesian estimators are presented
in section 4 and a comparative study is presented in section 5.

2. MANGAT AND SINGH [23] RANDOMIZED RESPONSETECHNIQUE

The basic idea behind Mangat and Singh [23] Randomized Response Technique is to de-
velop a random relationship between the stigmatized questions and individual’s responses.
In this technique, two randomization devicesR1 andR2 are used. The deviceR1 consists
of the two statements: (i) “do you belong to sensitive group?” and (ii) “do you not belong
to sensitive group?” presented with probabilitiesT and1 − T respectively. The random-
ization deviceR2 consists of the two statements: (i) “do you belong to sensitive group?”
and (ii) “do you not belong to sensitive group?” presented with probabilitiesP and1−P .
A respondent is selected and the response is recorded as “yes” if the respondent’s actual
status matches with the selected question and “no” else wise. For a particular respondent,
the probability for a “yes answer” is given by

P (yes) = φ = π{2(T + P − PT )− 1}+ (1− P )(1− T ) (2. 1)

whereT is the probability of answering the stigmatized question according to Mangat
and Singh [23], andP is the preset probability that the spinner (Randomized Device) points
to stigmatized question A according to Warner. The Maximum Likelihood Estimator ofπ
is given by

π̂ML =
φ̂− {(1− P )(1− T )}
{2(T + P − PT )− 1} (2. 2)

Whereφ̂ = x
n andx is the number of “yes responses” in the sample ofn respondents.

Consequently,

π̂ML =
π(1− π)

n
+

(1− P )(1− T ){1− (1− P )(1− T )}
n{(2P − 1) + 2T (1− P )}2 (2. 3)

3. PRESENTATION OF THEEXISTING BAYESIAN TECHNIQUE OFESTIMATION

Hussain et al. [15] in their referred paper presented a Bayesian estimation to the Ran-
domized Response Technique (RRT) put forward by Mangat and Singh[23] using a simple
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beta prior distribution to estimate the population proportion of respondents possessing sen-
sitive attribute. Assume the simple beta prior is defined as follows

f(π) =
1

β(a, b)
πa−1(1− π)b−1; 0 < π < 1 (3. 4)

where(a, b) are the shape parameters of the distribution andπ is the population proportion
of respondents possessing the sensitive attribute.

Let X =
∑n

i xi, whereX represents the total number of ‘yes’ responses in a sample
sizen drawn from the population with simple random sampling with replacement. Here,
xi = 1 with probabilityφ andxi = 0 with probability1− φ, whereφ is defined in (2. 1 )
above. Then the conditional distribution ofX givenπ is

f(X|π) =
(

n

x

)
φx(1− φ)n−x

f(X|π) =

�
n

x

�
{π(2T+2P−2PT−1)+(PT−P−T+1)}x

�
1− {π(2T + 2P − 2PT − 1) + PT − P − T + 1}n−x

�

Letting f1 = (T−1)(P−1)
2(T+P−PT )−1 andh1 = 3(1−PT )−2(T 2+P 2−2PT 2+T 2P 2)−T−P

2(T+P−PT )−1 we have
that

f(X|π) =
(

n

x

)
{(2T + 2P − 2PT − 1)}n(π + f1)x(1− π + h1)n−x

Letting

A =
(

n

x

)
{(2T + 2P − 2PT − 1)}n

then

f(X|π) = A

x∑

i=0

n−x∑

j=0

(
x

i

)(
n− x

j

)
fx−i
1 hn−x−j

1 πi(1− π)j (3. 5)

wherex = 0, 1, 2, ..., n.

The joint distribution ofX andπ is found by combining equations (3. 4 ) and (3. 5 )
which gives

f(X, π) =
A

β(a, b)

x∑

i=0

n−x∑

j=0

(
x

i

)(
n− x

j

)
fx−i
1 hn−x−j

1 πi(1− π)jπa−1(1− π)b−1

f(X, π) =
A

β(a, b)

x∑

i=0

n−x∑

j=0

(
x

i

)(
n− x

j

)
fx−i
1 hn−x−j

1 πa+i−1(1− π)b+j−1 (3. 6)

The marginal distribution ofX can be obtained from (3. 6 ) by integrating it overπ.
Thus, the marginal distribution ofX is

f(X, π) =
A

β(a, b)

x∑

i=0

n−x∑

j=0

(
x

i

)(
n− x

j

)
fx−i
1 hn−x−j

1

∫ 1

0

πa+i−1(1− π)b+j−1dπ

(3. 7)

f(X, π) =
A

β(a, b)

x∑

i=0

n−x∑

j=0

(
x

i

)(
n− x

j

)
fx−i
1 hn−x−j

1 β(a + 1, b + j) (3. 8)
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Then, the posterior distribution ofπ givenX is

f(π|X) =
f(X, π)
f(X)

=

∑x
i=0

∑n−x
j=0

(
x
i

)(
n−x

j

)
fx−i
1 hn−x−j

1 πa+i−1(1− π)b+j−1

∑x
i=0

∑n−x
j=0

(
x
i

)(
n−x

j

)
fx−i
1 hn−x−j

1 β(a + 1, b + j)

The Bayes estimator which is the posterior mean is

π̂SM =
∫ 1

0

πf(π|X)dπ =

∑x
i=0

∑n−x
j=0

(
x
i

)(
n−x

j

)
fx−i
1 hn−x−j

1 β(a + i + 1, b + j)
∑x

i=0

∑n−x
j=0

(
x
i

)(
n−x

j

)
fx−i
1 hn−x−j

1 β(a + 1, b + j)
(3. 9)

The Bias ofπ̂SM is
B(π̂SM ) = π̂SM − π (3. 10)

Similarly, the mean square error (MSE) ofπ̂SM is

MSE(π̂SM ) =
n∑

x=0

(π̂SM − π)2φx(1− φ)n−x (3. 11)

4. THE PROPOSEDBAYESIAN TECHNIQUES OFESTIMATION

In this section, we propose an alternative Bayesian estimation to Hussain et al [15] Ran-
domized Response Technique using both the Kumaraswamy (KUMA) and the Generalised
(GLS) beta prior distributions as our alternative beta prior distributions in addition to the
simple beta prior distribution used by Hussain et al [15].

4.1. Estimation of π using Kumaraswamy prior. The Kumaraswamy prior is defined
as follows:

fk(π) = bcπc−1(1− πc)b−1; b, c > 0 (4. 12)

Then the conditional distribution ofX givenπ according to equation(4. 12 ) is as follows

f(X|π) = A

x∑

i=0

n−x∑

j=0

(
x

i

)(
n− x

j

)
fx−i
1 hn−x−j

1 πi(1− π)j

By combining equations (4. 12 ) and (3. 5 ), the joint distribution ofX andπ is

f(X,π) = bcA

x∑

i=0

n−x∑

j=0

(
x

i

)(
n− x

j

)
fx−i
1 hn−x−j

1 πi(1− π)jπc−1(1− πc)b−1

We know that using Binomial series expansion

(1− πc)b−1 =
b−1∑

k=0

(−1)k

(
b− 1

k

)
πck

Therefore,

f(X, π) = bcA

x∑

i=0

n−x∑

j=0

b−1∑

k=0

(−1)k

(
x

i

)(
n− x

j

)(
b− 1

k

)
fx−i
1 hn−x−j

1 πck+c−1+i(1−π)j

(4. 13)
The marginal distribution ofX by integrating (4. 13 ) overπ is

f(X) =
∫ 1

0

f(X, π)dπ
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Thus,

f(X, π) = bcA

x∑

i=0

n−x∑

j=0

b−1∑

k=0

(−1)k

(
x

i

)(
n− x

j

)(
b− 1

k

)
fx−i
1 hn−x−j

1 β(ck+c+i, j+1)

(4. 14)
Then, the posterior distribution ofπ givenX is

f(π|X) =
f(X, π)
f(X)

=

∑x
i=0

∑n−x
j=0

∑b−1
k=0(−1)k

(
x
i

)(
n−x

j

)(
b−1

k

)
fx−i
1 hn−x−j

1 πck+c−1+i(1− π)j

∑x
i=0

∑n−x
j=0

∑b−1
k=0(−1)k

(
x
i

)(
n−x

j

)(
b−1
k

)
fx−i
1 hn−x−j

1 β(ck + c + i, j + 1)

Therefore, the Bayes estimator which is the posterior mean under square loss function is

π̂KM =
∫ 1

0

πf(π|X)dπ (4. 15)

Therefore, we have

π̂KM =

∑x
i=0

∑n−x
j=0

∑b−1
k=0(−1)k

(
x
i

)(
n−x

j

)(
b−1

k

)
fx−i
1 hn−x−j

1 β(ck + c + i + 1, j + 1)
∑x

i=0

∑n−x
j=0

∑b−1
k=0(−1)k

(
x
i

)(
n−x

j

)(
b−1

k

)
fx−i
1 hn−x−j

1 β(ck + c + i, j + 1)
(4. 16)

The bias as well as the mean square error (MSE) ofπ̂KM is

B(π̂KM ) = π̂KM − π (4. 17)

MSE(π̂KM ) =
n∑

x=0

(π̂KM − π)2φx(1− φ)n−x (4. 18)

4.2. Estimation of π using Generalised Beta prior. A Generalized Beta Prior with shape
parametersa, b, andc, is as follows:

fg(π) =
cπac−1(1− πc)b−1

β(a, b)
; a, b, c > 0; 0 < π < 1 (4. 19)

Recalling the conditional distribution ofX givenπ according to equation (3. 5 ) as follows

f(X|π) = A

x∑

i=0

n−x∑

j=0

(
x

i

)(
n− x

j

)
fx−i
1 hn−x−j

1 πi(1− π)j

By combining equations (3. 5 ) and (4. 19 ), the joint distribution ofX andπ is

f(X,π) =
cπac−1(1− πc)b−1

β(a, b)
A

x∑

i=0

n−x∑

j=0

(
x

i

)(
n− x

j

)
fx−i
1 hn−x−j

1 πi(1− π)j

Using the fact that

(1− πc)b−1 =
b−1∑

k=0

(−1)k

(
b− 1

k

)
πck

The joint distribution ofX andπ is then

f(X, π) = B

x∑

i=0

n−x∑

j=0

b−1∑

k=0

(−1)k

(
x

i

)(
n− x

j

)(
b− 1

k

)
fx−i
1 hn−x−j

1 πac+ck+i−1(1− π)j

(4. 20)
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whereB = c
β(a,b)

(
n
x

){(2T + 2P − 2PT − 1)}n

The marginal distribution ofX can be obtained by integrating the joint distribution ofX
andπ overπ

f(X) =
∫ 1

0

f(X, π)dπ

f(X) = B

x∑

i=0

n−x∑

j=0

b−1∑

k=0

(−1)k

(
x

i

)(
n− x

j

)(
b− 1

k

)
fx−i
1 hn−x−j

1 β(ac + ck + i, j + 1)

(4. 21)
Then the posterior distribution ofπ givenX is

f(π|X) =
f(X,π)
f(X)

Therefore,

f(π|X) =

∑x
i=0

∑n−x
j=0

∑b−1
k=0(−1)k

(
x
i

)(
n−x

j

)(
b−1

k

)
fx−i
1 hn−x−j

1 πac+ck+i−1(1− π)j

∑x
i=0

∑n−x
j=0

∑b−1
k=0(−1)k

(
x
i

)(
n−x

j

)(
b−1

k

)
fx−i
1 hn−x−j

1 β(ac + ck + i, j + 1)
(4. 22)

Under the square error loss function, the Bayes estimator which is the posterior mean is

π̂GM =
∫ 1

0

πf(π|X)dπ (4. 23)

π̂GM =

∑x
i=0

∑n−x
j=0

∑b−1
k=0(−1)k

(
x
i

)(
n−x

j

)(
b−1

k

)
fx−i
1 hn−x−j

1 β(ac + ck + i + 1, j + 1)
∑x

i=0

∑n−x
j=0

∑b−1
k=0(−1)k

(
x
i

)(
n−x

j

)(
b−1
k

)
fx−i
1 hn−x−j

1 β(ac + ck + i, j + 1)
(4. 24)

The bias and the mean square error (MSE) ofπ̂GM are respectively given as

B(π̂GM ) = π̂GM − π (4. 25)

MSE(π̂GM ) =
n∑

x=0

(π̂GM − π)2φx(1− φ)n−x (4. 26)

We have the following remarks:

(i) If c = 1, b > 1 in equation (4. 24 ), it reduces to equation (3. 9 ), (i.e. Posterior mean
of simple beta prior).

(ii) If a = 1 in equation (4. 24 ), it reduces to equation (4. 16 ), (i.e. Posterior mean of
Kumaraswamy prior) respectively.

5. NUMERICAL CONSIDERATION AND COMPARISON OFRESULTS

Here, we present the numerical consideration as well as comparative study of our results
with the existing Hussain et al [15] using life data on induced abortion with sample sizes
25, 100 and 250 respectively. To overcome the associated computational complexity, we
wrote computer programs using R statistical software to generate our results. To minimize
spaces, we present few results in tables and figures as follows:
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TABLE 1. Mean Square Errors (MSEs) for Mangat and Singh [23]; RRT
at n=25, x=11, P=0.6, T=0.1

π MSE BETA MSE KUMA MSE GLS
0.1 3.522838E-09 1.595930E-08 2.118868E-08
0.2 1.637035E-09 1.154269E-08 1.604532E-08
0.3 4.651384E-10 7.839988E-09 1.161586E-08
0.4 7.149482E-12 4.851191E-09 7.900309E-09
0.5 2.630678E-10 2.576301E-09 4.898665E-09
0.6 1.232893E-09 1.015318E-09 2.610929E-09
0.7 2.916626E-09 1.682427E-10 1.037100E-09
0.8 5.314267E-09 3.507456E-11 1.771778E-10
0.9 8.425814E-09 6.158137E-10 3.116323E-11

TABLE 2. Absolute Bias for Mangat and Singh [23]; RRT at n=25,
x=11, P=0.6, T=0.1

π |BIAS| BETA |BIAS| KUMA |BIAS| GLS
0.1 0.31415244 0.66865342 0.77045287
0.2 0.21415244 0.56865342 0.67045287
0.3 0.11415244 0.46865342 0.57045287
0.4 0.01415244 0.36865342 0.47045287
0.5 0.08584756 0.26865342 0.37045287
0.6 0.18584756 0.16865342 0.27045287
0.7 0.28584756 0.06865342 0.17045287
0.8 0.38584756 0.03134658 0.07045287
0.9 0.48584756 0.13134658 0.02954713

FIGURE 1. Graph showing the Mean Square Errors (MSEs) for Mangat
and Singh [23]; RRT at n=25, x=11, P=0.6, T=0.1
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FIGURE 2. Graph showing the Absolute Bias for Mangat and Singh
[23]; RRT at n=25, x=11, P=0.6, T=0.1

TABLE 3. Mean Square Errors (MSEs) for Mangat and Singh [23]; RRT
at n=25, x=11, P=0.6, T=0.2

π MSE BETA MSE KUMA MSE GLS
0.1 3.684814E-09 1.509758E-08 2.052966E-08
0.2 1.748030E-09 1.081163E-08 1.547251E-08
0.3 5.251540E-10 7.239592E-09 1.112926E-08
0.4 1.618470E-11 4.381457E-09 7.499926E-09
0.5 2.211227E-10 2.237229E-09 4.584495E-09
0.6 1.139968E-09 8.069088E-10 2.382971E-09
0.7 2.772721E-09 9.049572E-11 8.953539E-10
0.8 5.119381E-09 8.798990E-11 1.216443E-10
0.9 8.179948E-09 7.993914E-10 6.184202E-11

TABLE 4. Absolute Bias for Mangat and Singh [23]; RRT at n=25,
x=11, P=0.6, T=0.2

π |BIAS| BETA |BIAS| KUMA |BIAS| GLS
0.1 0.32129347 0.65035100 0.75837676
0.2 0.22129347 0.55035100 0.65837676
0.3 0.12129347 0.45035100 0.55837676
0.4 0.02129347 0.35035100 0.45837676
0.5 0.07870653 0.25035100 0.35837676
0.6 0.17870653 0.15035100 0.25837676
0.7 0.27870653 0.05035100 0.15837676
0.8 0.37870653 0.04964900 0.05837676
0.9 0.47870653 0.14964900 0.04162324



Extension of Mangat Randomized Response Technique Using Alternative Beta Priors 37

FIGURE 3. Mean Square Errors (MSEs) for Mangat and Singh [23];
RRT at n=25, x=11, P=0.6, T=0.2

FIGURE 4. Absolute Bias for Mangat and Singh [23]; RRT at n=25,
x=11, P=0.6, T=0.2

Comment: Whenn = 25, P = 0.6, T = 0.1 and0.2, the conventional estimator is
better than the proposed estimators whenπ lies within the range0.1 ≤ π < 0.6 while the
proposed estimators are better than the conventional estimator whenπ lies within the range
0.5 < π < 1. However, the proposed estimator assuming Generalised beta prior is the best
in obtaining higher responses from respondents whenπ lies within the range0.8 < π < 1
respectively.
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TABLE 5. Mean Square Errors (MSEs) for Mangat and Singh [23]; RRT
at n=100, x=43, P=0.6, T=0.1

π MSE BETA MSE KUMA MSE GLS
0.1 2.490621E-31 7.174576E-31 1.042948E-30
0.2 1.252086E-31 4.925454E-31 7.674376E-31
0.3 4.352874E-32 3.098068E-31 5.341012E-31
0.4 4.022418E-33 1.692417E-31 3.429383E-31
0.5 6.689663E-33 7.085024E-32 1.939490E-31
0.6 5.153048E-32 1.463233E-32 8.713334E-32
0.7 1.385449E-31 5.879997E-34 2.249120E-32
0.8 2.677328E-31 2.871723E-32 2.263645E-35
0.9 4.390943E-31 9.902004E-32 1.972764E-32

TABLE 6. Absolute Bias for Mangat and Singh [23]; RRT at n=100,
x=43, P=0.6, T=0.1

π |BIAS| BETA |BIAS| KUMA |BIAS| GLS
0.1 0.34367555 0.58330127 0.70327642
0.2 0.24367555 0.48330127 0.60327642
0.3 0.14367555 0.38330127 0.50327642
0.4 0.04367555 0.28330127 0.40327642
0.5 0.05632445 0.18330127 0.30327642
0.6 0.15632445 0.08330127 0.20327642
0.7 0.25632445 0.01669873 0.10327642
0.8 0.35632445 0.11669873 0.00327642
0.9 0.45632445 0.21669873 0.09672358

FIGURE 5. Mean Square Errors (MSEs) for Mangat and Singh [23];
RRT at n=100, x=43, P=0.6, T=0.1
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FIGURE 6. Absolute Bias for Mangat and Singh [23]; RRT at n=100,
x=43, P=0.6, T=0.1

TABLE 7. Mean Square Errors (MSEs) for Mangat and Singh [23]; RRT
at n=100, x=43, P=0.6, T=0.2

π MSE BETA MSE KUMA MSE GLS
0.1 2.687366E-31 6.095046E-31 8.920355E-31
0.2 1.392672E-31 4.038537E-31 6.388220E-31
0.3 5.197138E-32 2.403764E-31 4.277821E-31
0.4 6.849123E-33 1.190727E-31 2.589157E-31
0.5 3.900436E-33 3.994249E-32 1.322230E-31
0.6 4.312532E-32 2.985888E-33 4.770374E-32
0.7 1.245238E-31 8.202854E-33 5.358087E-33
0.8 2.480958E-31 5.559339E-32 5.186008E-33
0.9 4.138414E-31 1.451575E-31 4.718750E-32

TABLE 8. Absolute Bias for Mangat and Singh [23]; RRT at n=100,
x=43, P=0.6, T=0.2

π |BIAS| BETA |BIAS| KUMA |BIAS| GLS
0.1 0.35699179 0.53762977 0.65040803
0.2 0.25699179 0.43762977 0.55040803
0.3 0.15699179 0.33762977 0.45040803
0.4 0.05699179 0.23762977 0.35040803
0.5 0.04300821 0.13762977 0.25040803
0.6 0.14300821 0.03762977 0.15040803
0.7 0.24300821 0.06237023 0.05040803
0.8 0.34300821 0.16237023 0.04959197
0.9 0.44300821 0.26237023 0.14959197
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FIGURE 7. Mean Square Errors (MSEs) for Mangat and Singh [23];
RRT at n=100, x=43, P=0.6, T=0.2

FIGURE 8. Absolute Bias for Mangat and Singh [23]; RRT at n=100,
x=43, P=0.6, T=0.2

Comment: Whenn = 100, P = 0.6, T = 0.1 and0.2, the conventional estimator is
better than the proposed estimators whenπ lies within the range0.1 ≤ π < 0.6 while the
proposed estimators are better than the conventional estimator whenπ lies within the range
0.6 < π < 1. However, the proposed estimator assuming Generalised beta prior is the best
in obtaining higher responses from respondents whenπ lies within the range0.6 < π < 1
respectively.
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TABLE 9. Mean Square Errors (MSEs) for Mangat and Singh [23]; RRT
at n=250, x=106, P=0.6, T=0.1

π MSE BETA MSE KUMA MSE GLS
0.1 2.687366E-31 6.095046E-31 8.920355E-31
0.1 1.370491E-75 2.458503E-75 3.452974E-75
0.2 7.290805E-76 1.565361E-75 2.375915E-75
0.3 2.884169E-76 8.729657E-76 1.499603E-75
0.4 4.849995E-77 3.813171E-76 8.240377E-76
0.5 9.329721E-78 9.041524E-77 3.492192E-76
0.6 1.709062E-76 2.600564E-79 7.514735E-77
0.7 5.332293E-76 1.108516E-76 1.822210E-78
0.8 1.096299E-75 4.221898E-76 1.292438E-76
0.9 1.860116E-75 9.342747E-76 4.574120E-76

TABLE 10. Absolute Bias for Mangat and Singh [23]; RRT at n=250,
x=106, P=0.6, T=0.1

π |BIAS| BETA |BIAS| KUMA |BIAS| GLS
0.1 0.36951227 0.49490992 0.58652620
0.2 0.26951227 0.39490992 0.48652620
0.3 0.16951227 0.29490992 0.38652620
0.4 0.06951227 0.19490992 0.28652620
0.5 0.03048773 0.09490992 0.18652620
0.6 0.13048773 0.00509008 0.08652620
0.7 0.23048773 0.10509008 0.01347380
0.8 0.33048773 0.20509008 0.11347380
0.9 0.43048773 0.30509008 0.21347380

FIGURE 9. Mean Square Errors (MSEs) for Mangat and Singh [23];
RRT at n=250, x=106, P=0.6, T=0.1
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FIGURE 10. Absolute Bias for Mangat and Singh [23]; RRT at n=250,
x=106, P=0.6, T=0.1

TABLE 11. Mean Square Errors (MSEs) for Mangat and Singh [23];
RRT at n=250, x=106, P=0.6, T=0.2

π MSE BETA MSE KUMA MSE GLS
0.1 1.444141E-75 2.152002E-75 2.816811E-75
0.2 7.830597E-76 1.322851E-75 1.853732E-75
0.3 3.227252E-76 6.944477E-76 1.091400E-75
0.4 6.313739E-77 2.667906E-76 5.298141E-76
0.5 4.296276E-78 3.988017E-77 1.689751E-76
0.6 1.462019E-76 1.371647E-77 8.882735E-78
0.7 4.888541E-76 1.882995E-76 4.953708E-77
0.8 1.032253E-75 5.636292E-76 2.909381E-76
0.9 1.776399E-75 1.139706E-75 7.330859E-76

TABLE 12. Absolute Bias for Mangat and Singh [23]; RRT at n=250,
x=106, P=0.6, T=0.1

π |BIAS| BETA |BIAS| KUMA |BIAS| GLS
0.1 0.37931113 0.46303319 0.52974844
0.2 0.27931113 0.36303319 0.42974844
0.3 0.17931113 0.26303319 0.32974844
0.4 0.07931113 0.16303319 0.22974844
0.5 0.02068887 0.06303319 0.12974844
0.6 0.12068887 0.03696681 0.02974844
0.7 0.22068887 0.13696681 0.07025156
0.8 0.32068887 0.23696681 0.17025156
0.9 0.42068887 0.33696681 0.27025156
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FIGURE 11. Mean Square Errors (MSEs) for Mangat and Singh [23];
RRT at n=250, x=106, P=0.6, T=0.2

FIGURE 12. Absolute Bias forMangat and Singh [23]; RRT at n=250,
x=106, P=0.6, T=0.2

Comment: Whenn = 250, P = 0.6, T = 0.1 and0.2, the conventional estimator is
better than the proposed estimators whenπ lies within the range0.1 ≤ π < 0.6 while the
proposed estimators are better than the conventional estimator whenπ lies within the range
0.5 < π < 1. However, the proposed estimator assuming Generalised beta prior is the best
in obtaining higher responses from respondents whenπ lies within the range0.6 < π < 1
respectively.

DISCUSSIONS OFRESULTS

From the results presented in tables and figures1 to 12 respectively, whenn = 25,
P = 0.6, T = 0.1 and0.2, the conventional estimator is better than the proposed estimators
whenπ lies within the range0.1 ≤ π < 0.6 while the proposed estimators are better
than the conventional estimator whenπ lies within the range0.5 < π < 1. However,
the proposed estimator assuming Generalised beta prior is the best in obtaining higher
responses from respondents whenπ lies within the range0.8 < π < 1. Whenn = 100,
P = 0.6, T = 0.1 and0.2, the conventional estimator is better than the proposed estimators
whenπ lies within the range0.1 ≤ π < 0.6 while the proposed estimators are better
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than the conventional estimator whenπ lies within the range0.6 < π < 1. However,
the proposed estimator assuming Generalised beta prior is the best in obtaining higher
responses from respondents whenπ lies within the range0.6 < π < 1.

When n = 250, P = 0.6, T = 0.1 and 0.2, the conventional estimator is better
than the proposed estimators whenπ lies within the range0.1 ≤ π < 0.6 while the
proposed estimators are better than the conventional estimator whenπ lies within the range
0.5 < π < 1. However, the proposed estimator assuming Generalised beta prior is the best
in obtaining higher responses from respondents whenπ lies within the range0.6 < π < 1
respectively.

6. CONCLUSION

We have proposed alternative Bayesian estimators of the population proportion when
data are gathered through the Randomized Response Technique (RRT) proposed by Hus-
sain et al.[15]. We observed clearly from the results presented in tables and figures above,
that for small, intermediate as well as large sample sizes, the proposed Bayesian estimators
outperformed that of Hussain et al [15].
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